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1 Preamble 
The development of rigorous theories of the liquid state and of 
multi-component liquid mixtures has always been hampered by 
both the complexity of the statistical mechanics and the complex 
nature of intermolecular interactions. There are two central 
themes within chemical thermodynamics. The first deals with 
internal energy or enthalpy. As an example let us consider the 
internal energy E of a monatomic solid subject only to pairwise 
interactions. We can write for E (on a per atom basis): 

where N(r) equals the number of atoms at a distance r from an 
arbitrarily chosen central atom and E(r) is the pairwise interac- 
tion energy at a distance r. The summation is taken over all 
atoms. This equation needs to be modified to take into account 
the random structure of a liquid (or gas) composed of molecules 
of species 1: 

Q 1/2)p,Jo47+g, *(r)E(r)dr (1.2) 

where p1  equals the number density (i.e. atoms per unit volume) 
of 1 and g l l ( r )  is the so-called radial distribution function 
(rdf), the probability of finding a molecule of species 1 a distance 
r from the central atom relative to the probability of finding a 
molecule of species 1 a large distance from the central atom. In 
mixtures, rdfs between different components can also be 
defined. For example in a mixture of i and j, there are three rdfs, 
g,,(r), g,(r), g,,(r). The rdf can be more rigorously defined than 
given here and it is also defined for molecules with angular 
dependence in their intermolecular potentials by suitable angu- 
lar averaging. The rdf is also in principle measurable by X-ray or 
neutron diffraction experiments. Figure 1 gives examples of 
diffraction-derived rdfs for argon and water. The function is 
zero at very small distances (less than the molecular diameter) 
and near the distance of closest approach there is a pronounced 
peak. The area under this first peak relates to the number of 
nearest neighbours around any given molecule. The much more 
pronounced peak for argon corresponds to approximately ten 
nearest neighbours, unlike water which has only four or so. The 
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Figure 1 Radial distribution functions of liquid argon (solid line) at  
T = 84.3 K, P = 71 kPa, and water (broken line) at T = 227 K, 
P = 101 kPa. u equals 0.34 nm for argon and 0.282 nm for water. 

(Reproduced with permission from, F. Franks, ‘Water’, The Royal 
Society of Chemistry, 1983.) 

function oscillates to unity after three or four molecular dia- 
meters. The small peaks for argon at roughly two and three 
molecular diameters correspond to lattice-like packing that 
occurs in a dense fluid. For water there is a peak at a value less 
than two diameters which is strong direct evidence for the 
tetrahedral structure of water. A knowledge of g ,  l ( r )  is central 
to our understanding about the ‘structure’ of the fluid. It is clear 
that in some sense g l l ( r )  and E(r) must be correlated since a 
strongly repulsive energy would imply a low value ofg,  ,(r) and 
vice versa. In practice, the radial dependence E(r) is chosen either 
empirically or from quantum mechanical calculations and the 
variation of g, l ( r )  is estimated using various different ‘closure’ 
approximations. Such approaches are referred to as ‘integral 
equations’ . 

An example of the other major theme in thermodynamics, the 
second law, is the equation AGO = - RTlnK. In this case the 
equilibrium constant K gives us information about the molecu- 
lar nature, the ‘structure’ of the system which is related to the 
free energy without recourse to knowledge about the interac- 
tions occurring in the system. Kirkwood-Buff (KB) theory’ is 
analogous to this idea in that it relates the thermodynamic 
parameters to the structure without recourse to knowledge of 
the interactions in the system. The ‘structure’ parameters which 
occur in this theory are the so-called Kirkwood-Buff integrals: 

G,, = J,“ 4w2[g, , (r)  - l]dr 

The theory is unable to obtain rdfs, only their integrals. The 
results of KB theory are relatively straightforward, although the 
original derivation is somewhat complicated being formulated 
in terms of matrix algebra. Our aim in this article is to demystify 
KB theory by mapping out its theoretical background and 
derivation as well as giving various examples of the utility of the 
approach. 
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2 Theory as derived by Hall 
In 1971, Hall2 rederived much of KB theory using a more 
intuitive molecular thermodynamic approach As a prelude to 
the full, more formal derivation, we present with certain modifi- 
cations, the approach of Hall Let us consider a very dilute 
solution of a solute S in a mixture of 1 and 2 Let us consider two 
regions in solution one containing a molecule of S and its sphere 
of influence It is not necessary to define precisely this sphere of 
influence except to make sure that it contains all 1 and 2 that has 
been perturbed by S Such a region of solution is shown 
schematically in Figure 2a Let the number of molecules of 1 and 
2 in this sphere of influence equal N ;  and N; respectively Let us 
also consider a region of solution exactly the same size and shape 
as the first but far from any molecule of S, and thus containing 
only unperturbed solvent mixture 1 and 2 Let the number of 
molecules of A and B in this region equal N ;  and N2 (Figure 2b) 

Figure 2 (a) Schematic diagram of a solute S and its region of influence 
N;' and N ;  are the number of molecules of 1 and 2 in this volume (b) 
Schematic diagram of volume identical to that in (a) which contains 
neither a solute molecule nor solute-perturbed solvent molecules N;  
and N; are the number of molecules of 1 and 2 in this volume 

It is clear that the difference N'; - Nb relates to the KB integral 
of 2 around S 

Let us now consider unit volume of the dilute solution of S with 1 
and 2 in osmotic equilibrium with unit volume of the mixture 1 
and 2 We may write for the constant temperature Gibbs- 
Duhem equation for the two solutions 

The p1 and pol refer to the number densities of 1 in the two 
solutions At this point Hall made the eminently reasonable 
assumption that the difference p1 - p; must relate immediately 
to the term Gsl 

Subtraction of equation (2 3 )  from (2 2) and substitution of (2 4) 
readily yields 

Since we are dealing with very dilute solutions, we may substi- 
tute for the limiting expression for osmotic pressure* 

which gives 

In the limit that ns goes to zero, the term on the left hand side of 
equation (2 7) is simply the derivative of the standard chemical 
potential of S Thus 

This equation is readily extendable to any number of solvent 
components simply by adding further terms to the right hand 
side The equation which is readily obtainable from the full KB 
theory is applicable to the effect of change of solvent compo- 
sition on solute chemical potential which experimentally are 
measured as free energies of transfer, primary medium effect, 
salting in/out effects It has also been used in conjunction with 
transition state theory to discuss solvent effects in kinetics We 
will discuss the use of this equation below 

In order to develop equations that could be used for solutions 
that were not infinitely dilute, Hall introduced the clever idea of 
considering what would happen if solute S were identical in all of 
its chemical properties to one of the solvent components, e g 
component /3 but is in some way distinguishable It is clear that 

Gsl = G2 and Gs2 = G2, (2 9) 

We now wish to make the connection between the chemical 
potentials of S and 2 It can be readily shown that they are 
related by 

Substituting equations (2 9) and (2 10) into (2 7) we obtain 

This equation, which has great utility in interpreting activity 
coefficients and osmotic pressure measurements, is also obtain- 
able using the rigorous theory Its use will be discussed below 

3 Kirkwood-Buff Theory 
The full derivation of Kirkwood-Buff theory arises out of 
Grand Canonical Ensemble statistical thermodynamics3 and as 
such is not very accessible to many chemists In this section we 
wish to present an outline of the derivation as well as some 
background theory on the ensemble so as to permit the reader to 
comprehend the original work In order to help the reader, 
Figure 3 gives a flowchart of the ideas to be presented The 
original work was given in matrix algebra form for an n- 
component mixture and whilst it is an extremely elegant formu- 
lation, it can be very daunting to the neophyte Thus we shall 
develop the equations explicitly for a binary mixture and simply 
point out the matrix nature of the equations at suitable points in 
the development In fact our initial development of Grand 
Canonical Ensemble statistical mechanics commences with a 

* Throughout this work the theoretical development 1s performed on a per 
molecule rather than d per mole basis Thus we use Boltzmann s constant kB 
rather than the gas constant R When comparisons are made with experimental 
ddtd on d per mole basis it is simply necessary to  change ke for R and the resultant 
equations are automatically transformed into a per mole basis 
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THEORETICAL 
SECTION THEME 

The Grand Canonical 
Ensemble for a pure 

The Grand Canonical 
Ensemble partition 

Calculation 

average properties 

between ( N 2 )  and 

Generalization of the 
ideas to include a 

- 1  I 
Relation between g ,  2(r )  

and the term 

Conversion of the term 
(aN1/ap2)T V p r  to I 1 I ( a p 2 / a N 1 ) T V N 2  1 

Figure 3 Flowchart of various steps in theoretical development of 
Kirkwood-Buff theory 

pure liquid and is only generalized to a binary mixture as a 
second step 

3.1 The Grand Canonical Ensemble 
Gibbs developed the ideas of statistical mechanical ensembles so 
as to forge a formal connection between the thermodynamic 
properties of a system and its mechanical properties By mecha- 
nical properties we mean those properties which are peculiar to 
the individual atoms and molecules such as velocity, kinetic 
energy, etc An ensemble is a conceptual collection of an 
extremely large number of systems, each one constructed so as to 
be a replica at a thermodynamic level of the actual thermodyna- 
mic system of interest However, since the numbers of molecules 
and the possible quantum (or classical) states are extremely large 
indeed, the various systems will not be identical on the molecular 
level In order to forge the link between the mechanical and 
thermodynamic properties two postulates are necessary The 
first (often called the ergodic hypothesis) simply states that the 
longtime averages of the mechanical properties equal the 
ensemble averages The second hypothesis states that, subject to 
the external constraints on the system, all of the quantum (or 
classical) states are a prior1 equally probable 

The Grand Canonical Ensemble consists of systems all of 
volume Vimmersed in a bath at constant temperature Twith the 

REPRESENTATIVE 
EQUATIONS, FIGURES, 

ETC 

FIGURE 4 

Equations 

Equations 

Equations 
such as 

3 3 6 3  39 

walls of each of the systems being permeable to the molecular 
species The ensemble thus acts as a reservoir of molecules and 
thus each system is characterized by the thermodynamic vari- 
ables V, T, and p (the chemical potential) See Figure 4 Note 
that the number of molecules N within the systems is not fixed 
but fluctuates around an average value ( N )  Similarly, the 
energy of any system is not fixed It is important to note that the 
word 'fluctuation', which is frequently used in the context of the 
Grand Canonical Ensemble, has a highly specific meaning It 

Figure 4 Schematic representation of a Grand Canonical Ensemble 
Each system is characterized by a fixed volume, chemical potential, 
and temperature However, the walls between each system are perme- 
able to both energy and matter 
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has nothing to do with time-dependent changes in a parameter. 
It simply means that different replicate systems will have differ- 
ent values of the parameter of interest. 

3.2 The Grand Canonical Ensemble Partition Function 
As mentioned above, for any system in the ensemble neither the 
total number of molecules Nnor the total energy Eis fixed. They 
fluctuate. As molecules pass in and out of any of the systems 
both N and the quantum state of the system j change. In this 
section we wish to explore the consequences of these fluctuating 
properties; in particular we wish to consider the expression for 
the probability that a given system is in a certain state, i.e. the 
probability P ( N j )  that the system contains exactly N molecules 
and is in the quantum state represented by the index j .  By 
expanding out ln[P(Nj)] as a Taylor expansion in both Nand the 
energy E and considering two members of the ensemble which 
are widely separated and hence independent, it can be shown 
that:4 

where K ,  ,8, and y are as yet undetermined constants. It turns out 
that = l/kgTand y = p/kBTwhere p is the chemical potential. 
We require that the probability is correctly normalized, i.e. the 
sum of the probabilities for all values of N a n d j  equals unity. 
Thus we obtain from equation (3.1): 

and hence: 

where Z is referred to as the Grand Canonical Ensemble 
partition function. Z is a function of both T and p and is 
evidently a thermodynamic state function. The probability of a 
system being in the state (j,N) is thus: 

3.3 Calculation of Average Properties 
The average value of any set of replicate values is simply the 
value observed multiplied by the probability of occurrence and 
then summed over all of the set. Thus for N we may write: 

It is interesting to compare equation (3.3) and (3.5). If we 
differentiate equation (3.3) with respect to y we obtain the 
dividend of equation (3 S). (Several other important manipula- 
tions of the Grand Canonical Ensemble follow from this self- 
same property of differentiation of exponentials.) Thus we can 
write: 

The distribution of Naround the mean value ( N )  is very narrow 
(see below for further details) and may be approximated by a 
Gaussian distribution whose variance 0% is given by: 

where T is the total number of terms in the sum. As we shall see 
next, w& is very closely related to (d(N)/i3p)T,,. It is also related 
closely to the radial distribution function; once we have 
extended the treatment to multicomponent systems we will have 

all of the keys of the puzzle necessary to connect p to g(r) ,  the 
basis of Kirkwood-Buff theory. The ensemble average ( N 2 )  can 
be written: 

If we recast equation (3.5) in the form: 

we readily obtain by differentiation with respect to y (at constant 
Tand V ) :  

If we now substitute equations (3.6) and (3.8) into equation 
(3.9), we obtain (having removed the ensemble average ( ) from 
around the N in the aN/+ term): 

Finally, we can transform this equation through constant tem- 
perature thermodynamic equation dp = (V/N)dp, to give: 

(3.1 1) 

where K is the isothermal compressibility[ = (+ l/N)(dN/ 
d ~ ) ~ , ~  = (- l/v)(dV/i?p)T,N]. This equation is one of the cele- 
brated equations of the Grand Canonical Ensemble. As an 
example of the use of this equation for liquid water at 298.15 K, 
if we choose the volume to equal the molar volume, then from 
the experimental values of K (4.53 x 10-lo Pa-’), we find 
uN = 1.93 x loll .  This is the width of the distribution of values 
of Nwhose average value is obviously 6.022 x 1 O t 3 .  The fluctua- 
tions in N ,  and hence in concentration, are only one part in 
3 x 10l2. 

3.4 Generalization to a Binary Mixture 
If we refer back to Section 3.1, we see that the changes necessary 
to accomodate a binary mixture 1 + 2 in place of a pure 
component in the setting up of the ensemble are insignificant. 
We require simply that the walls of each system are permeable to 
both components. The natural variables are in this case the 
temperature T, the volume V, and the two chemical potentials pl 
and p2. The equation for the partition function thus becomes: 

Probability expressions occur in an analogous manner. How- 
ever, crucial to the development of Kirkwood-Buff theory are 
terms of the form ( N 1 N 2 )  - ( N l ) ( N 2 ) ,  corresponding to co- 
variance terms in statistics which measure the correlation of 
fluctuations between 1 and 2. As an example, if 1 and 2 were to 
have an affinity for each other, then we would expect to see any 
positive fluctuation in N ,  to be occurring simultaneously with a 
positive fluctuation in N,; this would be manifest as a positive 
co-variance. Here we begin to see some form ofchemically useful 
information emerging from the theory. Thus, following the idea 
suggested above, we obtain relatively straightforwardly: 

The corresponding terms for ( N : )  and (Nf) are identical with 
those of equation 3.10. 
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3.5 Relationship between (N&) and g,,(r) 
The relationship between the composition fluctuation terms 
such as ( N ,  N 2 )  and the radial distribution function g ,  2(r)  have 
been dealt with at various levels of rigour in different texts In 
this review we will present a somewhat informal argument in 
order to limit the scope of this article somewhat Let us choose at 
random a molecule of species 1 in a mixture of 1 + 2 and 
consider the local (number) density of molecules of species 2 at  a 
distance r p 1 2 ( r )  In a shell of thickness 6r the total number of 
molecules will be h r 2 p l  z(r)6r The number N ,  , of molecules of 
species 2 within a large volume Vdefined by the large distance R 
(R -+ a) from the reference molecule [ V = 4/3)nR3] is 

~ 1 2  = 1:477r2p12(r)dr (3 17) 

The number of molecules of species 1 in this region equals Vp,, 
and thus the product of molecules of species 1 and 2 within this 
region equals ( N ,  N ,  ) 

VP, J:477r2pl2(r)dr = ( N I N 2 )  (3 18) 

The corresponding values of ( N ,  ) and ( N 2 )  are then given by 

and noting that p12(r) relates to the radial distribution function 
g* z(r) 

Since at large values of R, p ,  2(r) should tend to p z  ( z  e there is no 
correlation between 1 and 2, and glz(r)  tends to unity) then the 
upper limit of equation 3 35 can be set to infinity The last 
equality comes from equation 1 3 where GI,  is the Kirkwood- 
Buff integral We now notice that ( N 1 N 2 )  - (N1)(N2) 
increases with V 

If we return to the above derivation, as applied to the term 
( N : ) ,  we need to note one important difference When applied 
to molecules of species 2 around 1,  equation 3 17 represents the 
number of molecules of species 2 in the volume If 1 and 2 are 
identical, then we must add one molecule so as to include the 
central molecule Thus we write 

Repeating the above treatment for species 1 around species 1 
yields 

( N : )  - (Nl)2 = Vp;1:4nr2kl1(r) - l]dr + V p ,  = VpiG,, + Vp, 
(3 23) 

3.6 The Problems of Equations 3.14,3.15, and 3.16 
These celebrated equations of Grand Canonical Ensemble sta- 
tistical mechanics link the conventional thermodynamic proper- 
ties to the ensemble fluctuations However, they are somewhat 
problematical since virtually all thermodynamic measurements 
involve measuring a chemical potential as a function of compo- 
sition, and not by fixing the second chemical potential as is 
required in these equations Thus our problem at this stage is 
simply to recast the equations to give terms of the form (aN, /  
d p I ) T Y N ,  and not ( a N 2 / 8 p 1 ) T v p 2  Using the rules of partial 
differentiation we may write for example 

The permuter rule of partial differentiation then gives 

Combining equations 3 24 and 3 25 and rearranging we obtain 
(at constant Tand V) 

where we have noted the definition of chemical potential implies 
that (apz) /dN,)N2 equals (dp ,>/aN2) , ,  Similar expressions are 
easily obtainable for (dlv,/ap,)p2 and (dN,/i?p,),, If we refer to 
the original work of Kirkwood and Buff written for an n- 
component mixture, we find equation 3 26 written in determi- 
nant form [their equation 81 

where A is the determinant whose factors are 

The determinant is obtained by removing row CL and 
column /3 from IA 1 

In summary then, for a binary mixture 1 + 2, there are three 
equations which relate the fluctuations to the conventional 
chemical potentials (equations such as 3 26), and three equa- 
tions which relate the fluctuations to the integrals of the radial 
distribution functions (equations such as 3 21 and 3 23) 

We now wish to solve equation 3 26 and the other two 
corresponding equations explicitly for the terms such as (i3pl/ 
aN2)N,  and we readily obtain equations such as 

(3 29) 

which are the determinantal equations given by Kirkwood-Buff 
(their equation 9) At this point in the development we should 
note that the only problem with equations such as 3 29 is that 
they hold at constant volume, and the final step is to recast them 
into constant pressure form and to put them into useful form 

3.7 Algebraic Manipulation to Obtain Useful Equations 
It is perhaps useful at this stage to consider what we can expect 
from our equations They have all been derived at constant 
temperature and so the theory as cast can only refer to free 
energies and not to entropies (the temperature derivative of free 
energy) nor to enthalpies We have in equations such as 3 29 
three independent expressions and thus would hope to be able to 
obtain equations for three useful parameters The Gibbs- 
Duhem expression tells us that for a binary mixture we have only 
one independent chemical potential and one independent partial 
molar volume A third parameter could be osmotic pressure 
(treating one of the two components as solute the other as 
solvent) However, osmotic pressures can be converted into 
chemical potentials with the aid of a partial molar volume and 
the solution compressibility Thus the three 'naturally occur- 
ring' thermodynamic parameters can be considered to be either 
the set chemicalpotentialpartzal molar volume, compressibility or 
the set chemicalpotentzal, partial molar volume, osmotic pressure 
For either of the two sets the resulting equations arise as 
different combinations of the terms Glz ,  G ,  ,, and G , ,  In order 
to convert equation 3 29 from a constant volume to a constant 
pressure expression, we may write using the rules of partial 
differentiation 
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(%) =(%) +(%) (*) (330) 
aN2 V T N ,  aN2 ~ T N ,  T N ,  N ,  a N 2  T V N ,  

The last term of the above equation can be rewritten as 

Equation 3 30 thus becomes [Kirkwood and Buffs equation 1 1) 

(&) =(&) + y 2  

aN2 V T N ,  aN2 ~ T N ,  K V  
(3 32) 

There are of course two other very similar equations to 3 32 
Final generation of the useful equations requires use of the 
Gibbs-Duhem equation 

It is readily shown by combining equations 3 23 and 3 33 and 
using the relationship V = N ,  V ,  + N ,  V ,  

This then gives us the required expression for the isothermal 
compressibility in conjunction with equations of the form of 
3 29 Similarly, we can obtain from equations 3 23 and 3 33 

N1(%) + N2(!?!?) V T N  =". K (3 35) 
dN2 V T N ,  

This equation, in conjunction with 3 34 gives the final expression 
for the partial molar volume with expressions such as 3 29 
Finally, with expressions for both compressibility and partial 
molar volume, we can obtain an expression for (dp, / i?N,)~,  N ,  
from equation 3 32 and such as 3 29 The osmotic pressure 
expression is obtained by conventional thermodynamic manipu- 
lation of the other quantities and is not derived explicitly here 
To summarize, the equations of Kirkwood-Buff theory as 
applied to a binary mixture 

3.8 Electrolyte Solutions 
One of the important constraints with the theory of electrolyte 
solutions is that of electroneutrality As well as requiring the 
well-known condition that in any given volume of solution, the 
total charge on the cations plus the anions must equal zero, it 
requires some other important conditions First, in terms of 
Debye-Huckel ideas, the charge on any given ion plus that of its 
ion atmosphere must equal zero Thus for the cation M + in a 1 1 
electrolyte MX in solvent 1 we may write 6-8 

with a similar equation for the anion X -  which implies that 
G M M  = Gxx In addition, the solvent around the ions is corre- 
lated such that the total solvent correlated around a central ion is 
due to the solvent around the ion plus the solvent correlated with 
both the cations and anions that are around the central ion 
Hall6 has treated this problem by arguing that the solvent 

correlations are much shorter range than the ion-ion interac- 
tions Thus he defines, in dilute solution, a slightly different KB 
integral 

G&l = 4rrrz1:[g~,(r) - l]dr ( 3  41) 

where R is chosen to be sufficiently large to include all ion- 
solvent interactions but sufficiently small to exclude ion-ion 
interactions Thus we write for G M 1  

with a similar equation for anion-solvent interactions If these 
equations are combined with equation 3 40, we can show that 
G M 1  equals Gxl which is the normal way of expressing this other 
electroneutrality condition Many of the salt properties of 
interest refer to infinite dilution and it is of interest to consider 
the behaviour of the various KB parameters in this domain by 
using the Poisson-Boltzmann radial distribution which occurs 
in Debye-Huckel theory for the ion-ion parameters It has been 
showng that for a 1 1 electrolyte such as NaCl, G M M  is given by 

where A and B are the conventional Debye-Huckel parameters 
with a the distance of closest approach and V, the excluded 
volume of the ions We note in passing that the limiting 
behaviour would arise if a more rigorous treatment were to be 
used in place of the Debye-Huckel approach We may note that 
G M M  tends to infinity as the salt concentration tends to zero, but 
that p M G M M  equals - 0 5 in the same limit Note also that 
p X G M X  equals + 0 5 In order to apply Kirkwood-Buff theory to 
a 1 I electrolyte, we simply replace the solute-solute term with 
G M M  and the solute-solvent term with GMl As we shall see 
below, this procedure, whilst not proved rigorously, guarantees 
that the derived equations have the correct form, I e they exhibit 
ion additivity where required, give the correct limiting form, and 
the correct Debye-Huckel limiting behaviour For higher 
charge type electrolytes, related expressions are obtained * 
More rigorous methods of treating electrolyte solutions are 
available but are generally formulated in terms of matrix 
algebra O 

4 Comparison with Experiment 
4.1 Introduction 
Equations 3 36-3 39 are the central results of Kirkwood-Buff 
theory with equation 2 11 being the corresponding equation 
from Hall's derivation It is very straightforward to obtain 
equation 3 39 from equation 2 11 by application of the Gibbs- 
Duhem relationship 

Pldll.1 + P2dP2 = 0 (4 1) 

We note that in the limit of pure I ,  equation 3 36 yields 

which is the celebrated equation of Grand Canonical Ensemble 
which also arises directly from equations 3 11 and 3 23 We note 
in passing that for typical liquids, the compressibilities are very 
small and G, , is very close to minus the molar volume (1 /pl)  For 
d dilute gas, the value of G, ,  is simply twice the second virial 
coefficient Figure 5 shows the calculated values of GI , for a 
van der Waals fluid with parameters corresponding to carbon 
dioxide as a function of density for three temperatures At the 
critical point, the compressibility and hence also G, are infinite 
which is the origin of the maximum for the T/T, = 1 5 graph It is 
only at temperatures sufficiently high above the critical tempera- 
ture that we see a monatonic variation with density 

Before we discuss in detail the use of Kirkwood-Buff theory to 
interpret the thermodynamic properties of mixtures, it is worth 
noting that the expression for the osmotic pressure (equation 
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0 63 1 

-111 , 
0 0 5  1 1 5  2 2 5  3 3 5  4 4 5  5 

1 /pl (dm3 mol-’) 

Figure 5 Variation of GI1 with density for van der Waals’ fluid 
corresponding to CO, Top curve T/T, = 1 5, middle curve T/Tc = 3, 
bottom curve T/Tc = 10 

3 38) involves only solute-solute interactions The theoretical 
ideas concerning the use of osmotic equilibrium conditions to 
remove solvent interactions were developed by McMillan and 
Mayerl and has led to the phrase ‘McMillan-Mayer standard 
state’ whereby the solution of interest is in osmotic equilibrium 
with pure solvent Their theory is in many senses a precursor to 
KB theory and it is probably fair to say that it has found more 
acceptance than KB theory in that it concentrates attention on 
solute-solute interactions The beauty of KB theory is that 
through equations such as 2 11, one can work either in the 
McMillan-Mayer standard state (where dpl = 0) or for normal 
(otherwise known as Lewis and Randall) standard states where 
p1 and pz are connected by the Gibbs-Duhem expression thus 
allowing the effect of solute-solvent interactions to be included 
in a rigorous fashion in any treatment of solutions 

4.2 Binary Solvent Mixtures 
Ben-Naim13 was the first to consider the use of equations 
( 3  36-3 39) to obtain the values of GI, (i,j = 1,2) in the binary 
inixture H,O + EtOH (1 + 2) Although the problem is in 
essence simple (we have three equations and three unknowns), 
there are many practical difficulties involved which relate to the 
requirements of highly precise data, the need to curve fit data 
and then differentiate them so as to obtain partial molar 
volumes, etc and then to combine the differentiated data so as to 
obtain the KB integrals The reader is referred to the original 
paper for specific details (cfthe work of Donkersloot14 which 
also includes an analysis of the HzO + EtOH system ) An 
interesting attempt at forging a connection between the other 
major theme in solution theory, that of ‘integral equation’ 
approaches (see Preamble above) involves the use of the ‘Per- 
cus-Yevick’ closure approximation to estimate KB parameters 
for various model liquids l 5  Donkersloot14 has explored the 
connection of thermodynamically obtained KB parameters with 
the information obtainable from X-ray and neutron diffraction 
data It turns out (see also ref 7) that the KB parameters arise 
very naturally in expressions for the diffraction experiment in 
the limit of zero scattering angle Thus either the thermodyna- 
mic data can be used to calibrate the diffraction experimental 
data or else the diffraction data can be used to estimate thermo- 
dynamic information In a homogenous liquid, light scattering 
occurs due to composition fluctuations, the same fluctuations 
manifest in KB theory To date most light scattering data have 
been interpreted in terms of association equilibria, but recently 
efforts have been made to interpret light scattering results 
through KB theory l 6  

Work in the area of binary solvent mixtures discussed above 
has been somewhat hampered by a lack of intepretation of the 
values of the various KB parameters In particular, there is 
criticism that the r2 weighting in the KB integral (equation 1 3) 

implies that it can be dominated by molecules beyond the first 
shell of neighbours l 4  If this is the case then a simple ‘chemical’ 
interpretation is likely to prove to be daunting This problem will 
be discussed further in the section on molar volumes of electro- 
lyte solutions It seems likely that a value of G,, in a binary 
mixtuie considerably more positive than minus the molar 
volume of pure component 1 is evidence of strong self-associa- 
tion (see e g refs 13 and 14) Similar arguments could apply to 
GI where (as we will see below) in the limit of pure 2, G ,  is close 
to minus the molar volume of 1 What is needed are analyses of 
systems that are well understood Examples could be hard 
spheres of different sizes, very weakly interacting systems, and 
mixtures of single H-bond donors and acceptors where conven- 
tional analysis using classical thermodynamics and association 
equilibria already give unequivocal results 

4.3 Free Energies of Transfer 
The variation of the thermodynamic properties of a solute in 
dilute solution as the solvent composition is varied is of major 
importance throughout chemistry, impinging as it does on 
solvent effects on solubility, kinetics, equilibria, pH, etc Much 
of the work in this area has involved the idea of preferential 
solvation where, for example, the composition of solvent close 
to the solute in a binary solvent mixture 1 + 2 will be different 
from the bulk solvent composition Thus for example, if solvent 
component 1 is found preferentially close to the solute then we 
expect that the solute chemical potential will be lower in 1 than in 
2 Preferential solvation can in principle be estimated spectro- 
scopically and here is apparently a method for obtaining ther- 
modynamic information for single ions (an idea not in accord 
with classical ideas about thermodynamics) Earlier work 
used the ideas of successive equilibria of discrete solvates but the 
rigorous development of such ideas did require extra-thermody- 
namic assumptions 

In order to use KB theory for this problem, we need to explore 
the consequences of the electroneutrality conditions discussed 
above (Section 3 9) on the equations of interest If we start with 
equation 2 I 1  for a ternary mixture of S + 1 + 2 

and simply substitute the expression GM1 (and GMZ) in equation 
3 42 for Gsl (and GS2), and GMM in equation 3 43 for Gss, we 
obtain 

This equation has the required form for extrapolation to infinite 
dilution for a 1 1 electrolyte 

Equation 4 7 exhibits the required ion additivity relationship 
from which Hall6 defined a single ion medium effect 

Equations 4 7 and 4 8 have been used either in conjunction with 
spectroscopic data (NMR)ls or as a simple thermodynamic 
analysis l 9  When combined with the Gibbs-Duhem expression 
(4 1) equation 4 8 becomes 

(4 9) 

where AG; is the free energy of transfer of ion M + from pure 2 to 
solvent mixture of mole fraction x, The solvent chemical 
potential p1 can be expanded out to give 

(4 10) dPl = RTdIna, = RTdlnx, + RTlny, 
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where a , ,  xl, and y ,  are respectively the activity, mole fraction, 
and mole fraction activity coefficient of 1 in the pure solvent 
mixture Providing that we have solvent mixture density data 
from which we can obtain an analytical expression for the mole 
fraction dependence of p1 by curve fitting and an analytical 
expression for y l ,  then the only unknown on the right-hand side 
of equation 4 9 is Gk2 - G k l  Two possibilities have been 
explored First, we can try to estimate Gk2 - G k l  from spectro- 
scopic data for the cation so as to allow integration of equation 
4 9 We can do similarly for the anion and then addition of these 
two free energies of transfer would allow comparison with 
thermodynamically derived data The other option is not to 
separate the cation and anion terms in equation 4 7 but to 
develop a corresponding equation in differential form with 
respect to x1, and numerically to differentiate the experimental 
thermodynamic data so as to extract the term 
(Gk2 - G&, + Gk2 - Gk,) directly l 9  

4.4 Partial Molar volumes 
The limiting partial molar volumes of a non-electrolyte solute at 
zero concentration is readily obtained from equation 3 37 
(noting a change of nomenclature to a mixture of solute S in 
solvent 1) 

Lim(Js) = I/n, + G,,  - Gsl (4 11) 
PS - 0 

Note that the first two terms on the right-hand side of this 
equation equal K k B T  If we refer to equation 2 8 and use the 
explicit pressure derivative we immediately obtain 

The reason for the difference between equations 4 11 and 4 12 is 
in the pressure derivative of the lnps term in equation 2 8, which 
simply equals minus the compressibility Virtually all experi- 
mental measurements of volumes refer to equation 4 11 As 
mentioned above, the compressibilities of liquids are small far 
from the critical point, and the difference between the two 
equations is then small 

Using the approach outlined above for free energies, it has 
been shown19 that the corresponding equation for the partial 
molar volume of an ion M + in solvent 1 is given by 

Lim (GM) = - 
PM -+o 

which provides an unambiguous definition of single ion molar 
volumes Ion-solvent radial distribution functions have been 
obtained for a variety of ions in water by X-ray and neutron 
diffraction The results are generally interpreted in terms of a 
given number of water molecules N in a primary solvation shell 
If the total radius of ion plus solvation shell equals rand the total 
contribution of solvent beyond the first shell is negligible then it 
is clear that 

GG1 = Nipl - (4n/3)r3 (4 14) 

Using experimental values for the molar volumes of ions in 
water and knowing N ,  it is possible to calculate Y for the above 
assumption It is found that for most cations, the value of R is 
close to 1 A larger than the position of the first maximum in the 
radial distribution function (as it should be), which is strong 
evidence that (at least for ion-solvent interactions) long-range 
contributions to the KB parameters are negligible 

From equation 2 8 it is also apparent that the partial molar 
volume of the salt MX in a binary solvent mixture 1 + 2 equals 

Providing partial molar volume data are available for the pure 
solvent mixture (or can be calculated from density data) as are 
compressibilities, then, in conjunction with free energy of 
transfer data (see Section 4 3 above), it is possible to extract 
(Gk, + Gk,) and (Gh2 + Gk2) separately Figure 6 shows such a 
separation for the salt NaCl in H,O + MeOH l 9  
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Figure6 Variation of G&l + Gg1 = Gsl (curve a) and GC2 + Gk2 = GS2 
(curve b, note change ofszgn) with mole fraction for solutions of NaCl 
(MX) at infinite dilution in methanol (1) + water (2) mixtures 

The effect of change of solvent composition on the rate of a 
chemical reaction has frequently been discussed in terms of free 
energies of transfer of reactants and transition state from one 
solvent mixture to another 

A + B In solvent I C' 

1 AGt" 1 Act" .1 A G  (4 16) 
Cf A + in solvent 1 + 2 

The free energy of activation in solvent mixture 1 + 2 
[ A  Ci( 1 + 2)] is thus given by 

dGf(1 + 2) - AGf(1) = dG,"(Cr) - dG,"(A) - dGy(B)(4 17) 

with a similar equation for volumes From a temperature- 
dependent kinetic study one can obtain the free energies of 
activation (dG*) and from a pressure dependence study the 
corresponding volumes of activation can be obtained Using an 
analysis similar to the one above, it is possible to estimate the 
Kirkwood-Buff parameters (Gel - CAI - GBl) and 
(Gc2 - GAz - GB2) The use of these ideas to obtain important 
insight into the nature of the transition state and its solvation has 
recently been explored by Blandamer and co-workers 2o We 
note in passing that if the free energies of transfer of reactants 
could be measured directly, by e g  solubilities or electrode 
measurements, then the KB parameters corresponding to the 
transition state could be obtained directly 

4.5 Salt Activity Coefficients 
As was mentioned above, the Poisson-Boltzmann radial distri- 
bution which arises in Debye-Huckel theory is a useful starting 
point for the application of Kirkwood-Buff theory to electro- 
lytes If equation 3 43 is substituted into equation 3 39 as 
discussed above, we obtain after some simplification 
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where 

If we convert equation 4 18 to activity coefficients we immedi- 
ately obtain 

with C = G M 1  + V, In the interests of simplicity we have not 
substituted the corresponding equation for GMl but treat C as a 
fitting parameter Figure 7 shows the best fit for activity coeffi- 
cients of KCI up to saturation with two unknowns, 4, the 
distance of closest approach and C The value of A ,  the Debye- 
Huckel slope, is fixed at its normal value 
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Figure 7 Observed (El) molar standard-state mean ionic activity coeffi- 
cients for KC1 in water and best fit to equation (4 20) with a = 2 95 8, 
and C = 2 95 cm3 mol-* (-) 

4.6 Separation of KB Parameters for Electrolyte Solutions 
As with binary solvent mixtures (Section 4 2 above), all that is 
required to separate the three KB parameters for electrolyte 
solutions is three sets of thermodynamic data, most likely molar 
standard-state activity coefficients, density data so as to obtain 
partial molar volume, and compressibilities We may note from 
equation 3 43 that for a 1 1 electrolyte, the term for GMM always 
contains the term - 0 5/PM and that once the expression has 
been inserted into equation 3 39 this term disappears from the 
expression for activity coefficients (equation 4 18) If we thus 
curve fit molar standard-state activity coefficients we obtain 
(C - GbM) which equals GM1 - GMM + 0 5/PM This term may 
be expressed in terms of a power series We may rewrite equation 
for partial molar volumes (3 37) 

We thus substitute from the activity coefficient the expression 
for GMl - G,, into equation 4 19 which allows us to obtain 
(GI,  - GMM) It is then straightforward but somewhat tedious 
to substitute (GMl - G, and (GMl - GMM) into the compressi- 
bility equation 3 36 to obtain an expression for GM1, and thence 
GMM and G l l  (See ref 8 for details) In Figure 8 we show 
unpublished data for the separation of the three KB parameters 
for aqueous NaCl up to saturation 

5 Postlude 
In this pedagogic review of the development and applications of 
KB theory, no attempt has been made to be all encompassing 
with the literature Rather we give a somewhat biased and 
personal view of some of the more interesting and hopefully 

064 I I 

0 1 2 3 4 5 6 
Concentration (mot dm-3) 

Figure 8 Variation of the Kirkwood-Buff Parameters for NaCl in water 
as a function of concentration C M M  + 0 5 / P M  (-), G , ,  (------), 
GrZ;, + G:1 (------) 

fruitful avenues for the understanding of liquid mixtures There 
is one theoretical area that we have not touched upon, namely 
that of direct correlation functions These functions, closely 
related as they are to radial distribution functions, are of central 
importance in a whole variety of liquid state and solution 
theories The only reason for not dealing with them in the meat 
of the text here is in the interests of brevity Direct correlation 
functions were introduced by Ornstein and Zernike in 1914 2 1  

They argued that for a pure liquid, the total correlation [g(r) - 11 
of molecule 1 on molecule 2 should be equal to a direct 
correlation C(Y) of molecule 1 on molecule 2 plus an indirect 
correlation of molecule 1 on all of the other molecules which 
were themselves correlated with 2 This problem can be treated 
in terms of a convolution integral 2 2  

g(r) - 1 = c(r) + pc(r)*[g(r) - I ]  ( 5  1) 

where * implies a convolution integral Such functions can be 
manipulated by Fourier Transform techniques and it can be 
shown that 

G, ,  = c,, + PCl lGl l  ( 5  2) 
where C,, = S47rrZc(r)dr ( 5  3) 

The application of Kirkwood-Buff-type theories which use the 
integrals C,, may be found in some of the other articles in the 
multi-author reference 8 
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